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Details About Our Synthetic Dataset
In this section, we give a thorough overview of the celestial
objects featured in our synthetic dataset and the process of
turbulence simulation, corresponding to Footnote 5 of the
main paper.
Selected celestial bodies. To adequately expose the network
to prior knowledge of celestial bodies, we downloaded as
many 3D models of celestial bodies as possible from the
NASA website1. These models are drawn based on the data
from space probes and cover various common types of ce-
lestial bodies in the solar system, including:
• 9 planets, namely Mercury, Venus, Venus (surface),

Earth, Mars, Jupiter, Saturn, Uranus and Neptune. Plan-
ets are the largest bodies orbiting the Sun. For Venus,
there are two different models representing the planet
with and without its atmosphere;

• 4 dwarf planets, namely Ceres, Makemake, Haumea, and
Eris. Dwarf planets are celestial bodies that, like planets,
orbit the Sun, but they are not dominant in their orbital
zone;

• 3 asteroids, namely Bennu, Itokawa and Vesta. Asteroids
are small, rocky bodies that orbit the Sun and are found
mainly in the asteroid belt between the orbits of Mars and
Jupiter;

• 11 satellites of various planets, namely the Moon (of
Earth), Phobos (of Mars), Io, Europa, Ganymede and
Callisto (of Jupiter), Enceladus, Tethys, Dione, Rhea and
Iapetus (of Saturn). Satellites are celestial bodies that or-
bit planets.

Examples of these four types of celestial bodies are shown
in Figure 6. It should be specifically noted that Venus, Mars,
Jupiter, Saturn, and the Moon are common targets of real-
world planetary imaging. To ensure fairness, we designated
these five celestial bodies strictly for the test set and did not
utilize them in the training process of our network.
Details of the simulation pipeline. Here, we provide more
details on the turbulence simulation pipeline, as illustrated
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in Fig. 2 of the main paper. We first use the layer-wise pa-
rameter configurator to assign Di and r0i to each layer. Ini-
tially, we randomly select parameters D and r0, where D
and r0, respectively, represent the diameter of the photog-
rapher’s lens and the total Fried parameter along the path.
Since the observed turbulence intensity depends on D

r0
, we

actually select the parameters D and D
r0

for our study. The
two parameters are randomly chosen for each ground truth
and its corresponding disturbed images, as recommended
by (Zhang et al. 2022). In our case, the value of D is uni-
formly distributed between 0.1 m and 0.4 m, while D

r0
is

uniformly distributed between 1 and 3, corresponding to the
common apertures of the planetary observation telescopes
and the typical turbulence magnitude during planetary pho-
tography.

To obtain the r0i for each layer, we configure them ac-
cording to Table 4 in (Li et al. 2020), so that the variance of
phase fluctuation between the actual beam and the approx-
imate beam is minimized, and r0 satisfies the relation with
r0i (for i = 1, 2, 3) as

r0 =

(
3∑

i=1

r
−5/3
0i

)−3/5

. (1)

The specific configuration is shown in Table 3, where α is
a constant that can be solved by substituting the total Fried
parameter r0 along with the physically configured r0i into
Equation (1), and Di is the equivalent aperture at the bottom
of the atmosphere of the i-th layer, defined as

Di =

{
D0 + θ0

∑2
j=i Vj+1(C), i = 1, 2

D0, i = 3

Here, θ0 is the angular extent of the celestial body to the ob-
server. As shown in Figure 7, the decreasing trend in mean
variance with increasing N demonstrates the effectiveness
of finer layer-wise segmentation in capturing the subtle vari-
ations in atmospheric turbulence, yet as N increases further,
the diminishing returns in variance reduction suggest that
N = 3 represents an optimal trade-off. Following this, we
simulate different turbulence magnitudes for each layer in
a top-to-bottom sequence using the pre-trained model pro-
vided by (Mao, Chimitt, and Chan 2021). Subsequently, the



Planet Dwarf planet SatelliteAsteroid

Figure 6: Visual representation of four types of celestial objects included in our synthetic dataset. From left to right, the images
show two examples for each type: planets (Mars and Jupiter), dwarf planets (Eris and Makemake), asteroids (Bennu and
Itokawa), and satellites (Dione and Ganymede).

Figure 7: Mean variance of atmospheric turbulence magni-
tude as a function of the number of discrete atmospheric lay-
ers (N ) used in the simulation. Each layer is configured with
distinct values of Di and r0i , contributing to the overall tur-
bulence profile captured by our pipeline. Our choice N = 3
significantly reduces the mean variance of turbulence mag-
nitude, without incurring too much computational cost.

simulation passes through a noise generator to yield the fi-
nal simulation result. An additional visual comparison of the
photon simulator PhoSim (Peterson et al. 2015) and our sim-
ulation method is presented in Figure 8, showing that our
simulation method can produce similar result to the physi-
cally accurate photon simulator, while much more efficient
in time.
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Figure 8: Comparison between PhoSim (Peterson et al.
2015) and our simulation method, demonstrating that our
simulation method is a close approximation to the physically
accurate photon simulator PhoSim (Peterson et al. 2015).

Table 3: This table presents the configuration of each atmo-
spheric layer in our turbulence simulation pipeline, as refer-
enced in Fig. 2 of the main paper. We provide the values of
Vi(C)/m and r0i/m for each layer, which are essential for
reducing the variance of phase fluctuation between the actual
and approximate beams. The values of r0i are set according
to Table 4 in (Li et al. 2020), making sure that Equation (1)
is followed for the connection between Di and r0i .

i Vi(C)/m r0i/m

1 4877 0.6844 α
2 3860 0.3941 α
3 1263 0.0895 α



Table 4: Quantitative evaluation of different layer configura-
tions. PSNR and SSIM values are shown for each configu-
ration.

C V(C) PSNR (dB) SSIM
Ours Ours 27.78 0.9007

Doubled Ours 22.12 0.7928
Halved Ours 22.73 0.8138
Ours All the Same 25.56 0.8499
Ours Reversed 20.92 0.7779

Evaluation of the turbulence simulator. We compare dif-
ferent layer configurations by creating datasets and summa-
rizing the quantitative results in Table 4, where C is the
overall turbulence strength, and V(C) represents its varia-
tion across layers (see Equation 2 in the main paper for de-
tails). First, we vary C while keeping V(C) constant, not-
ing a significant performance drop. Then, we keept C con-
stant and modified V(C), either making strength uniform
across layers or reversing its order, both of which lead to
significant degradation. The all the same case in the table
refers to no distance awareness. These experiments show
that our distance-aware simulator configuration achieves su-
perior performance.
Why not color image? Taking pictures of planets typi-
cally involves using black-and-white CMOS or CCD sen-
sors to capture images with different band filters due to
the faint light of planets. This technique, which focuses on
grayscale imaging, maximizes image clarity and resolution
by capturing all incoming photons, resulting in higher clarity
and signal-to-noise ratio (SNR), especially in scenarios with
short exposure times. As planetary objects are usually faint,
as mentioned in (Li et al. 2020), grayscale images are pre-
ferred for more detailed observations. Before creating color
images from these grayscale pictures, it is essential to per-
form turbulence removal operations, allowing for the pro-
cessing of grayscale images only.

Details of PlaNet Architecture
In this section, we will give a more thorough explanation of
the design of our PlaNet network, including a comprehen-
sive demonstration of how the network processes arbitrary
input frames, and why the edge-based supervision is able to
be effective in practice.

Permutation-invariant feature aggregation. The core
design for processing arbitrary input frames is the proposed
OBG module. As discussed in Sec. 4 of the main paper, a
CBAM block is used to aggregate the recalibrated feature
maps, and two ConvBlocks are used to decode the aggre-
gated feature maps into a single output image. To illustrate
this, let us assume an arbitrary number of N input grayscale
frames with shape (N, 1, H,W ). The features of each frame
are extracted and calibrated independently to get a tensor of
shape (N,C,H,W ), where C is the number of feature chan-
nels for each frame. After passing through the CBAM block
and two ConvBlocks, the tensor’s shape is transformed to
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Figure 9: Visualization of the edge map showing the im-
pact of atmospheric turbulence on individual frames and
the efficacy of the averaging operation in mitigating distor-
tion. Each frame shows its own unique distortions, which
are significantly reduced in the stabilized image because of
the zero-mean Gaussian distribution that is typical of atmo-
spheric turbulence, leading to a less distorted edge map.

(1, C,H,W ) and (1, 1, H,W ), resulting in the final output.

Edge-based supervision. We present a visualization of
the edge map in Figure 9, which shows how each input
frame is affected by atmospheric distortions. These distor-
tions, mainly characterized by a zero-mean Gaussian distri-
bution, are substantially reduced through our averaging pro-
cess. This technique effectively stabilizes the image, signifi-
cantly diminishing the effects of atmospheric distortion. No-
tably, while the boundary of the planet appears blurry with
low contrast, our approach relies on edge supervision in-
stead of direct supervision in the image domain. This strat-
egy takes advantage of the stabilizing effect of the edges,
ensuring improved definition and clarity. Therefore, even
though some blurriness is inherent due to atmospheric con-
ditions, our method avoids the reconstruction of an overly
blurred image, preserving a balance between stability and
image sharpness.

Additional Comparisons on Synthetic and
Real Data

This section extends the comparison of the software Au-
toStakkert with four state-of-the-art learning-based methods
(Mao et al. 2022; Li et al. 2021; Dudhane et al. 2022; Chan
et al. 2022) to both synthetic and real datasets. Specifically,
for synthetic data, Figure 10 corresponds to Footnote 6 in
the main paper. Similarly, for real data, Figure 11 is aligned
with Footnote 8 in the main paper.
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Figure 10: Qualitative comparisons on synthetic data among our method, a representative planetary imaging software Au-
toStakkert, and several state-of-the-art learning-based methods that solve the closest problems including TurbNet (Mao et al.
2022), NIDR (Li et al. 2021), BIPNet (Dudhane et al. 2022), and BasicVSR++ (Chan et al. 2022).
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Figure 11: Qualitative comparisons on real data among our method, a representative planetary imaging software AutoStakkert,
and several state-of-the-art learning-based methods that solve the closest problems including TurbNet (Mao et al. 2022), NIDR
(Li et al. 2021), BIPNet (Dudhane et al. 2022), and BasicVSR++ (Chan et al. 2022).
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