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About the Problem Scope and Usability
Our Pol-ShaRe aims to solve the very same problem as cur-
rent image shadow removal methods (Li et al. 2023; Guo
et al. 2023a; Liu et al. 2023a,b) (i.e., restoring image con-
tent only in shadow regions, which is a partial degradation
problem) under the guidance of polarization. As far as we
know, there is no existing polarization-based method can
do the same thing. The most relevant works could be the
following ones: Lin et al. (2006) proposed a polarization-
based method to separate the overlapping cast shadows and
enhance the contrast, however, it directly computes the de-
gree of polarization of the incoming light to the sensor and
treats it as the result of contrast enhancement, which can-
not recover the original pixel values and can only handle the
grayscale images; Reda, Shen, and Zhao (2019) proposed a
polarization-based method to enhance the images where all
pixels are in the shadow region with extremely low illumi-
nation, which solves a global degradation problem more like
low-light image enhancement.

Considering that current image shadow removal methods
(Li et al. 2023; Guo et al. 2023a; Liu et al. 2023a,b) pri-
marily address outdoor scenes lit by daylight under sunny
weather, due to the lighting conditions of existing datasets
(Qu et al. 2017; Wang, Li, and Yang 2018; Le and Samaras
2019), our Pol-ShaRe is also designed for such scenes to en-
sure practical usability. Regarding image capturing, our Pol-
ShaRe is as convenient as current shadow removal methods,
as capturing polarized images merely requires placing a po-
larizer in front of the lens.

About the Shadow Image Formation Model
Considering the outdoor scenes lit by daylight under sunny
weather, there are mainly two light sources: direct sun-
light and ambient skylight (Tian and Tang 2011). Denoting
their illumination spectral power distribution (SPD) as L(λ),
Lsun(λ), and Lsky(λ) respectively (where λ is the wave-
length), the relationship between them can be written as

L(λ) = Lsun(λ) + Lsky(λ). (13)

† Most of this work was done as a PhD student at Peking
University.
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Here, the sunlight component is often stronger (Tian, Sun,
and Tang 2009), i.e.,

Lsun > Lsky (14)

holds for most cases. According to the photometric model
proposed by Tian, Sun, and Tang (2009), when taking photos
in such scenes, the total intensity of the captured image I can
be described as

I =

∫
λ

L(λ) ·R(λ) ·Q(λ)dλ

=

∫
λ

(Lsun(λ) + Lsky(λ)) ·R(λ) ·Q(λ)dλ

=

∫
λ

Lsun(λ) ·R(λ) ·Q(λ)dλ+

∫
λ

Lsky(λ) ·R(λ) ·Q(λ)dλ

= Isun + Isky,
(15)

where R(λ) and Q(λ) are the reflectance and camera sensi-
tivity function respectively, Isun and Isky denote the intensity
components of sunlight and skylight respectively.

About the Weighting Function Used for
Extracting Priors

The idea of designing a weighting function W(v) to filter
the pixels with relatively larger values in v is inspired from
Ono et al. (2022). Specifically, W(v) can be written as

W(v) =
1

(1 + ea(v−b))
, (16)

where the hyper-parameters a and b are set to −50 and 0.08
respectively, which are the same as the ones used by Ono
et al. (2022). From Eq. (16) we can see for a certain pixel in
v, a larger value of W(v) indicates that the pixel has higher
confidence to be larger. And the effectiveness of the selec-
tion of the hyper-parameters is verified by Ono et al. (2022).

Layer and Training Details
Layer details. Both the FE block, multiplier block, and bias
block are designed to be bottleneck blocks (He et al. 2016).
The FF block consists of a convolution layer and a squeeze-
and-excitation block (Hu, Shen, and Sun 2018). The FD
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Figure 6: Additional examples of shadow removal results using our method and current ones (Inpaint4Shadow (Li et al. 2023),
ShadowDiffusion (Guo et al. 2023b), ShadowFormer (Guo et al. 2023a), DMTN (Liu et al. 2023a), and TBRNet (Liu et al.
2023b)) on synthetic data. The close-up views of red box regions are displayed below each image.

block consists of two strided convolution layers to down-
sample the features. The FU block first adopts two trans-
posed convolution layers to upsample the features outputted
by the TGD module and estimates a multiplier and a bias
from them using a multiplier block and a bias block respec-
tively, and then performs demodulation-like operations on
I∗ to obtain the final output I. As for the backbone network
of the first stage, we choose the U-Net architecture (Ron-
neberger, Fischer, and Brox 2015) due to its excellent per-
formance on dense prediction tasks. Instance normalization
(Ulyanov, Vedaldi, and Lempitsky 2016) and LeakyReLU

are added after each convolution layer.

Training details. We implement the network using Py-
Torch with 4 NVIDIA 1080Ti GPUs, and apply a two-phase
training strategy: first, training two stages for 100 epochs
respectively in an independent manner to ensure a stable ini-
tialization; then, finetuning the entire network in an end-to-
end manner for another 100 epochs. The batch size is set to
4, and the learning rate is set to 0.01. For optimization, we
use Adam optimizer (Kingma and Ba 2014) with β1 = 0.5,
β2 = 0.999.
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Figure 7: Additional examples of shadow removal results using our method and current ones (Inpaint4Shadow (Li et al. 2023),
ShadowDiffusion (Guo et al. 2023b), ShadowFormer (Guo et al. 2023a), DMTN (Liu et al. 2023a), and TBRNet (Liu et al.
2023b)) on real data. The close-up views of red box regions are displayed below each image.

Inpaint4Shadow (Li et al. 2023) ShadowDiffusion (Guo et al. 2023b) ShadowFormer (Guo et al. 2023a) DMTN (Liu et al. 2023a) TBRNet (Liu et al. 2023b) Ours

Params (M) 23.9 55.5 11.3 45.6 69.9 10.4
MACs (G) 166.7 444.4 152.2 297.9 881.2 83.3

Table 3: Computational complexity analysis on synthetic data among our method and current ones (Inpaint4Shadow (Li et al.
2023), ShadowDiffusion (Guo et al. 2023b), ShadowFormer (Guo et al. 2023a), DMTN (Liu et al. 2023a), and TBRNet (Liu
et al. 2023b)).

More Information About the Synthetic Dataset
Considering the fact that there is no public dataset contain-
ing pairwise shadow and shadow-free images with polarized
observations, and existing benchmark datasets (e.g., SRD
(Qu et al. 2017), ISTD (Wang, Li, and Yang 2018), and
ISTD+ (Le and Samaras 2019)) do not contain any polariza-
tion information, we propose to generate a synthetic dataset
for network training. Here, for obtaining a large number
of polarized shadow-free images as the source data in a
more convenient manner, we choose to use a Lucid Vision
Phoenix polarization camera (RGB) instead of a linear po-
larizer to capture outdoor scenes lit by daylight under sunny

weather, since the polarization camera can take four images
with different polarizer angles (0◦, 45◦, 90◦, and 135◦) at
a single shot. Note that in practical applications, our Pol-
ShaRe does not require a polarization camera, and we only
need to place a polarizer in front of the lens and rotating it
for obtaining multiple polarized images.

After capturing, we can directly obtain I, d, and m using
Eq. (5), Eq. (6), and Eq. (7) in the main paper as the ground
truth for supervision. Then, we adopt the rendering-based
simulation approach proposed by Inoue et al. (Inoue and
Yamasaki 2020) to synthesize I∗ as the input image from I
with different shadow patterns by generating different k, and



generate reasonable polarization-related parameters accord-
ing to the statistics of outdoor illumination (Sekera 1957;
Kupinski et al. 2019) to obtain d∗ as the input guidance.
Besides, we add noise to better simulate the real situation.
Specifically, we capture 100 different scenes in total, and we
randomly split them into two parts that contain 90 and 10
scenes for making the training and test sets respectively. For
each scene in the training (test) set, we randomly generate
90 (10) different shadow patterns so that the training (test)
set contains 8100 (100) different images finally. The images
are resized and cropped to 400× 400.

More Results on Synthetic Data
In this section, we provide additional examples of shadow
removal results using our method and current ones (In-
paint4Shadow (Li et al. 2023), ShadowDiffusion (Guo et al.
2023b), ShadowFormer (Guo et al. 2023a), DMTN (Liu
et al. 2023a), and TBRNet (Liu et al. 2023b)) on synthetic
data, as shown in Fig. 6.

Computational Complexity Analysis
In this section, we evaluate the computational complexity
of our method and current ones (Inpaint4Shadow (Li et al.
2023), ShadowDiffusion (Guo et al. 2023b), ShadowFormer
(Guo et al. 2023a), DMTN (Liu et al. 2023a), and TBRNet
(Liu et al. 2023b)) on our synthetic test dataset using a single
NVIDIA 4090 GPU, as shown in Tab. 3.

More Results on Real Data
In this section, we provide additional examples of shadow
removal results using our method and current ones (In-
paint4Shadow (Li et al. 2023), ShadowDiffusion (Guo et al.
2023b), ShadowFormer (Guo et al. 2023a), DMTN (Liu
et al. 2023a), and TBRNet (Liu et al. 2023b)) on real data,
as shown in Fig. 7.
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