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Details of the Simulation Experiment about
the Average Error Rates

In this section, we provide details of the simulation exper-
iment about the average error rates, corresponding to Foot-
note 4 of the paper.

First, we take the polarized images captured with a long
exposure time in the PLIE dataset as the ground truth
normal-light images Iα1,2,3,4 . Then, according to Eq. (6) of
the paper, we simulate the process of generating the corre-
sponding low-light images Îα1,2,3,4

(γ) using

Îαi
(γ) =

{
1
γ Iαi

+Ni if γ > 1

Iαi
if γ = 1

(i = 1, 2, 3, 4),

where γ is a linear scaling factor denoting the image irra-
diacne reduction caused by decreasing the exposure time or
scene radiance, and Ni = N ( 1γ Iαi

) is a noise term (we
adopt the same settings as Lv, Li, and Lu (2021)). We gen-
erate Îαi

(γ) with 10 different γ (γ ∈ [1, 10] and γ ∈ Z+),
and compute the average error rates of the polarized images,
AoP, DoP, and Stokes parameters for each γ. Finally, we get
the relationships between the average error rates and γ, as
shown in Fig. 1 (c) of the paper.

More Information about the PLIE Dataset
In this section, we provide more information about the PLIE
dataset, corresponding to Footnote 5 of the paper.

First, we use a Lucid Vision Phoenix polarization cam-
era to capture 130 different indoor scenes with variant ob-
jects, materials, and scene depths as the data source to make
the PLIE dataset (some of the source images are shown
in Fig. 6). Each scene is captured twice, with a short ex-
posure time tshort (as the low-light one) and a long expo-
sure time tlong = 10tshort (as the normal-light one). Note
that we should not choose a very large linear scaling fac-
tor (e.g., γ = 30) like other single-image low-light en-
hancement datasets, since the DoP and AoP could be al-
ready significantly degenerated when γ = 10; and if γ is
too large, the polarization information could be too lacking.
In each capture, the camera outputs four spatially-aligned
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Figure 6: A gallery showing some example scenes of the
PLIE dataset.

and temporally-synchronized polarized images with differ-
ent polarizer angles α1,2,3,4 = 0◦, 45◦, 90◦, 135◦. For keep-
ing the camera untouched to avoid misalignment caused by
camera motion during the capturing procedure, we place the
camera on a sturdy tripod and use software to change the ex-
posure time. The original spatial resolution of the captured
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Figure 7: Additional visual quality comparisons (part 1) on the PLIE dataset among our method, IPLNet (Hu et al. 2020),
EnlightenGAN (Jiang et al. 2021), UTVNet (Zheng, Shi, and Shi 2021), and Zero-DCE (Guo et al. 2020). Quantitative results
evaluated using PSNR (P) and SSIM (S) are displayed below each image.

PSNR-p SSIM-p PSNR-θ SSIM-θ PSNR-S0 SSIM-S0

Ours 5.41 0.11 2.44 0.08 2.81 0.01
IPLNet (Hu et al. 2020) 4.31 0.08 2.63 0.10 6.35 0.04
EnlightenGAN (Jiang et al. 2021) 4.73 0.11 1.65 0.04 4.85 0.04
UTVNet (Zheng, Shi, and Shi 2021) 4.97 0.11 2.78 0.09 4.02 0.09
Zero-DCE (Guo et al. 2020) 5.47 0.15 1.31 0.03 4.39 0.04

Table 3: The standard deviations of the quantitative evaluation results on the PLIE dataset among our method, IPLNet (Hu et al.
2020), EnlightenGAN (Jiang et al. 2021), UTVNet (Zheng, Shi, and Shi 2021), and Zero-DCE (Guo et al. 2020).

polarized images is 1224 × 1024, and we crop the images
in the middle to discard dark corners caused by vignetting
effect so that the spatial resolution becomes 1024× 1024.

Then, we randomly split the data source into two parts
that contain 100 and 30 scenes for making the training and
test sets respectively. When making the training set, we crop
each 1024× 1024 source image in the middle to obtain four
512 × 512 images, and perform data augmentation (e.g.,
random cropping, flipping, and rotating) on them, so that
we have 6000 different 256 × 256 images for training. The
process of making the test set is similar to the one of mak-
ing the training set, while in which we do not perform data
augmentation so that the spatial resolution of test images is
512× 512.

Additional Visual Quality Comparisons on the
PLIE Dataset

In this section, we provide additional visual quality com-
parisons on the PLIE dataset among our method, IPLNet

(Hu et al. 2020), (the only existing method designed for
enhancing polarized low-light images as far as we know),
and three state-of-the-art single-image low-light enhance-
ment methods including EnlightenGAN (Jiang et al. 2021),
UTVNet (Zheng, Shi, and Shi 2021), and Zero-DCE (Guo
et al. 2020), as shown in Fig. 7 and Fig. 8, corresponding to
Footnote 7 of the paper.

The Standard Deviations
In this section, we provide the standard deviations of the
quantitative evaluation results on the PLIE dataset among
our method, IPLNet (Hu et al. 2020), EnlightenGAN (Jiang
et al. 2021), UTVNet (Zheng, Shi, and Shi 2021), and Zero-
DCE (Guo et al. 2020), as shown in Tab. 3.

Additional Results of the Applications of
Polarization-Based Vision

In this section, we provide additional results of the appli-
cations of polarization-based vision, including reflection re-



P:25.11 S:0.718 P:17.65 S:0.598 P:21.11 S:0.569 P:19.95 S:0.581

𝐩𝐩

P:15.53 S:0.414

P:15.73 S:0.509 P:15.68 S:0.355 P:11.51 S:0.268 P:15.43 S:0.496 P:12.71 S:0.221

𝜽𝜽

P:37.94 S:0.982 P:15.97 S:0.947 P:17.58 S:0.861 P:19.63 S:0.798 P:14.41 S:0.854

Ground truthInput Ours IPLNet EnlightenGAN UTVNet Zero-DCE

𝐒𝐒0

P:25.32 S:0.739 P:24.72 S:0.687 P:23.73 S:0.636 P:23.26 S:0.680

𝐩𝐩

P:16.69 S:0.454

P:19.16 S:0.402 P:18.17 S:0.308 P:15.17 S:0.225 P:19.12 S:0.397 P:11.90 S:0.123

𝜽𝜽

P:37.72 S:0.979 P:32.52 S:0.969 P:24.37 S:0.871 P:16.91 S:0.759 P:23.26 S:0.882

𝐒𝐒0

Figure 8: Additional visual quality comparisons (part 2) on the PLIE dataset among our method, IPLNet (Hu et al. 2020),
EnlightenGAN (Jiang et al. 2021), UTVNet (Zheng, Shi, and Shi 2021), and Zero-DCE (Guo et al. 2020). Quantitative results
evaluated using PSNR (P) and SSIM (S) are displayed below each image.

moval (using PRRPAW (Lei et al. 2020)) and shape from po-
larization (using DP3I (Deschaintre, Lin, and Ghosh 2021)),
as shown in Fig. 9 and Fig. 10 respectively, corresponding
to Footnote 9 and Footnote 10 of the paper respectively.
Note that for shape from polarization, we do not have the
ground truth normal maps for these two objects, instead we
provide the normal maps estimated from normal-light po-
larized images as references without computing quantitative
metrics. From Fig. 9 we can see that our method can im-

prove the performance of reflection removal both quantita-
tively and qualitatively, and outperforms IPLNet (Hu et al.
2020) consistently. Although from Fig. 10 we cannot quanti-
tatively tell how many degrees of mean angular error (MAE)
the enhanced normal maps decrease, it is obvious that the
estimated normal maps after enhancement are cleaner and
smoother by a large margin (note that these two objects
both have smooth surfaces), while IPLNet (Hu et al. 2020)
brings negative effects since it generates over-smooth DoP
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Figure 9: Additional results of reflection removal (using PRRPAW (Lei et al. 2020)) before and after enhancement by our
method and IPLNet (Hu et al. 2020). Quantitative results evaluated using PSNR (P) and SSIM (S) are displayed below each
image. Please zoom-in for better details.
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Figure 10: Additional results of shape from polarization (using DP3I (Deschaintre, Lin, and Ghosh 2021)) before and after
enhancement by our method and IPLNet (Hu et al. 2020). Please zoom-in for better details.

and AoP, leading to degenerated normal maps.
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